A Case Study of an Unusually Intense Atmospheric Gravity Wave

1988 ◽  
Vol 116 (10) ◽  
pp. 1857-1886 ◽  
Author(s):  
Lance F. Bosart ◽  
Anton Seimon
Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 110 ◽  
Author(s):  
Shih-Sian Yang ◽  
Masashi Hayakawa

The precursory atmospheric gravity wave (AGW) activity in the stratosphere has been investigated in our previous paper by studying an inland Kumamoto earthquake (EQ). We are interested in whether the same phenomenon occurs or not before another major EQ, especially an oceanic EQ. In this study, we have examined the stratospheric AGW activity before the oceanic 2011 Tohoku EQ (Mw 9.0), while using the temperature profiles that were retrieved from ERA5. The potential energy (EP) of AGW has enhanced from 3 to 7 March, 4–8 days before the EQ. The active region of the precursory AGW first appeared around the EQ epicenter, and then expanded omnidirectionally, but mainly toward the east, covering a wide area of 2500 km (in longitude) by 1500 km (in latitude). We also found the influence of the present AGW activity on some stratospheric parameters. The stratopause was heated and descended; the ozone concentration was also reduced and the zonal wind was reversed at the stratopause altitude before the EQ. These abnormalities of the stratospheric AGW and physical/chemical parameters are most significant on 5–6 March, which are found to be consistent in time and spatial distribution with the lower ionospheric perturbation, as detected by our VLF network observations. We have excluded the other probabilities by the processes of elimination and finally concluded that the abnormal phenomena observed in the present study are EQ precursors, although several potential sources can generate AGW activities and chemical variations in the stratosphere. The present paper shows that the abnormal stratospheric AGW activity has also been detected even before an oceanic EQ, and the AGW activity has obliquely propagated upward and further disturbed the lower ionosphere. This case study has provided further support to the AGW hypothesis of the lithosphere-atmosphere-ionosphere coupling process.


Nature ◽  
1976 ◽  
Vol 264 (5585) ◽  
pp. 420-421 ◽  
Author(s):  
TOM BEER ◽  
G. L. GOODWIN ◽  
G. J. HOBSON

Author(s):  
Graeme Marlton ◽  
Andrew Charlton-Perez ◽  
Giles Harrison ◽  
Christopher Lee

2017 ◽  
Author(s):  
Rui Song ◽  
Martin Kaufmann ◽  
Jörn Ungermann ◽  
Manfred Ern ◽  
Guang Liu ◽  
...  

Abstract. Gravity waves (GWs) play an important role in atmospheric dynamics. Especially in the mesosphere and lower thermosphere (MLT) dissipating GWs provide a major contribution to the driving of the global wind system. Therefore global observations of GWs in the MLT region are of particular interest. The small scales of GWs, however, pose a major problem for the observation of GWs from space. We propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from atmospheric soundings. In our study, we simulate satellite observations of the rotational structure of the O2 A-band nightglow. A key element of the new method is the ability of the instrument or the satellite to operate in so called target mode, i.e. to stare at a particular point in the atmosphere and collect radiances at different viewing angles. These multi-angle measurements of a selected region allow for tomographic reconstruction of a 2-dimensional atmospheric state, in particular of gravity wave structures. As no real data is available, the feasibility of this tomographic retrieval is carried out with simulation data in this work. It shows that one major advantage of this observation strategy is that much smaller scale GWs can be observed. We derive a GW sensitivity function, and it is shown that target mode observations are able to capture GWs with horizontal wavelengths as short as ~ 50 km for a large range of vertical wavelengths. This is far better than the horizontal wavelength limit of 100–200 km obtained for conventional limb sounding.


2000 ◽  
Vol 27 (1) ◽  
pp. 41-44 ◽  
Author(s):  
H. U. Frey ◽  
S. B. Mende ◽  
J. F. Arens ◽  
P. R. McCullough ◽  
G. R. Swenson

Sign in / Sign up

Export Citation Format

Share Document